Crystal orientation-dependent fatigue characteristics in micrometer-sized single-crystal silicon
نویسندگان
چکیده
منابع مشابه
EFFECT OF SPIRAL DESIGN ON CRYSTAL ORIENTATION DURING SINGLE CRYSTAL GROWTH
Geometrical design of the spiral crystal selector can affect crystal orientation in the final single crystal structure. To achieve a better understanding of conditions associated with the onset of crystal orientation in a spiral crystal selector, temperature field was investigated using three-dimensional finite element method during the process. Different geometries of spiral crystal selec...
متن کاملInfluence of crystal orientation on the thermomechanical fatigue behaviour in a single- crystal superalloy
متن کامل
High-Cycle Fatigue of Single-Crystal Silicon Thin Films
When subjected to alternating stresses, most materials degrade, e.g., suffer premature failure, due to a phenomenon known as fatigue. It is generally accepted that in brittle materials, such as ceramics, fatigue can only take place in toughened solids, i.e., premature fatigue failure would not be expected in materials such as single crystal silicon. The results of this study, however, appear to...
متن کاملEffect of Crystal Orientation on Fatigue Failure of Single Crystal Nickel Base Turbine Blade Superalloys
High cycle fatigue (HCF) induced failures in aircraft gas turbine and rocket engine turbopump blades is a pervasive problem. Single crystal nickel turbine blades are being utilized in rocket engine turbopumps and jet engines throughout industry because of their superior creep, stress rupture, melt resistance, and thermomechanical fatigue capabilities over polycrystalline alloys. Currently the m...
متن کاملCrystallographic Orientation Dependent Reactive Ion Etching in Single Crystal Diamond.
Sculpturing desired shapes in single crystal diamond is ever more crucial in the realization of complex devices for nanophotonics, quantum computing, and quantum optics. The crystallographic orientation dependent wet etch of single crystalline silicon in potassium hydroxide (KOH) allows a range of shapes to be formed and has significant impacts on microelectromechanical systems (MEMS), atomic f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Microsystems & Nanoengineering
سال: 2016
ISSN: 2055-7434
DOI: 10.1038/micronano.2016.27